261 research outputs found

    A Software-based Low-Jitter Servo Clock for Inexpensive Phasor Measurement Units

    Full text link
    This paper presents the design and the implementation of a servo-clock (SC) for low-cost Phasor Measurement Units (PMUs). The SC relies on a classic Proportional Integral (PI) controller, which has been properly tuned to minimize the synchronization error due to the local oscillator triggering the on-board timer. The SC has been implemented into a PMU prototype developed within the OpenPMU project using a BeagleBone Black (BBB) board. The distinctive feature of the proposed solution is its ability to track an input Pulse-Per-Second (PPS) reference with good long-term stability and with no need for specific on-board synchronization circuitry. Indeed, the SC implementation relies only on one co-processor for real-time application and requires just an input PPS signal that could be distributed from a single substation clock

    STPA-SafeSec: Safety and Security Analysis for Cyber-Physical Systems

    Get PDF
    AbstractCyber-physical systems tightly integrate physical processes and information and communication technologies. As today's critical infrastructures, e.g., the power grid or water distribution networks, are complex cyber-physical systems, ensuring their safety and security becomes of paramount importance. Traditional safety analysis methods, such as HAZOP, are ill-suited to assess these systems. Furthermore, cybersecurity vulnerabilities are often not considered critical, because their effects on the physical processes are not fully understood. In this work, we present STPA-SafeSec, a novel analysis methodology for both safety and security. Its results show the dependencies between cybersecurity vulnerabilities and system safety. Using this information, the most effective mitigation strategies to ensure safety and security of the system can be readily identified. We apply STPA-SafeSec to a use case in the power grid domain, and highlight its benefits

    Threat Analysis of BlackEnergy Malware for Synchrophasor based Real-time Control and Monitoring in Smart Grid

    Get PDF
    The BlackEnergy malware targeting critical infrastructures has a long history. It evolved over time from a simple DDoS platform to a quite sophisticated plug-in based malware. The plug-in architecture has a persistent malware core with easily installable attack specific modules for DDoS, spamming, info-stealing, remote access, boot-sector formatting etc. BlackEnergy has been involved in several high profile cyber physical attacks including the recent Ukraine power grid attack in December 2015. This paper investigates the evolution of BlackEnergy and its cyber attack capabilities. It presents a basic cyber attack model used by BlackEnergy for targeting industrial control systems. In particular, the paper analyzes cyber threats of BlackEnergy for synchrophasor based systems which are used for real-time control and monitoring functionalities in smart grid. Several BlackEnergy based attack scenarios have been investigated by exploiting the vulnerabilities in two widely used synchrophasor communication standards: (i) IEEE C37.118 and (ii) IEC 61850-90-5. Specifically, the paper addresses reconnaissance, DDoS, man-in-the-middle and replay/reflection attacks on IEEE C37.118 and IEC 61850-90-5. Further, the paper also investigates protection strategies for detection and prevention of BlackEnergy based cyber physical attacks

    Distributed Adaptive Learning Framework for Wide Area Monitoring of Power Systems Integrated with Distributed Generations

    Get PDF
    This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness

    The OpenPMU Platform for Open Source Phasor Measurements

    Get PDF

    Electrical Heating Emissions on the Island of Ireland

    Get PDF
    This paper shows the effect on household greenhouse gas emissions if standalone or supplementary electric heating was to replace conventional heating methods, based on the present day electrical grid. While having the capability to improve future grid effectiveness and dynamic stability through the potential incorporation of demand side management (DSM). The All-Ireland system has been used in this paper as an example of a network which has been experiencing a significant increase in renewable generation. To show the potential of the electric heating methods the characteristics of existing domestic heating systems will be discussed, in terms of their heat output against their exhaust emissions (gCO2e/kWh). This will then be compared to that of the grid CO2 Intensity, showing the frequency and duration of the possible emission savings involved when using electricity as a main or supplementary heating source
    corecore